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Abstract. Factorial correlators measure the amount of dynamical correlation in the multiplicity between
two separated phase-space windows. We present the analytical derivation of factorial correlators for a QCD
jet described at the double logarithmic (DL) accuracy. We obtain a new angular scaling property for prop-
erly normalized correlators between two solid-angle cells or two rings around the jet axis. Normalized QCD
factorial correlators scale with the angular distance and are independent of the window size. Scaling vio-
lations are expected beyond the DL approximation, in particular from the subjet structure. Experimental
tests are feasible, and thus would be welcome.

1 Introduction

Large multiplicity fluctuations observed in high energy
collisions have already been studied for many years [1].
Advanced methods of data analysis like, e.g., the factorial
moment approach [2–4] have been introduced and imple-
mented for the analysis of multiplicity patterns. Finally,
these led to the discovery of intermittency in multiparticle
production which refers to the scaling of factorial moments
with the size of a single bin within the analyzed pattern
[3,4].

Many different models have been proposed for the ex-
planation of the effect [5]. Some suggested that an underly-
ing final state multiparticle cascade may be responsible for
the scaling of the particle moments [3,6]. Straightforward
calculations performed for multiplicative random cascad-
ing models [2,3,7] led to qualitative predictions for the
scaling behavior of factorial moments which were backed
afterwards by analyses proposed in the framework of the
standard theory of strong interactions (QCD) [8]. Monte
Carlo simulations based on conventional QCD parton cas-
cading tend to describe quite well this effect [9], confirming
the relevance of scaling properties in QCD parton cascad-
ing. However, discrepancies in the precise comparison with
analytical predictions remain [9].

So far, both the phenomenological and theoretical in-
vestigations of multiplicity patterns have concentrated
mostly on different kinds of particle moments estimated
for a single bin [5]. There are, however, still intriguing
questions remaining about the properties of correlations
between different bins. The observables related to these
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correlations are expected to reflect the presence of large
dynamical fluctuations underlying the pattern, stronger
than the averaged observables estimated for a single bin.
To investigate these bin–bin correlations the factorial cor-
relators [3,4] have been introduced.

Factorial correlators seem to contain some extra infor-
mation on multiplicity fluctuations which may be used to
complete and adjust the information obtained from the
standard factorial moment analysis [10]. Moreover, the
present status of experimental investigations [9,11] allows
one to expect that the comparison of model predictions
with real data will be possible soon. It could help to in-
vestigate more systematically the validity of QCD Monte
Carlo approaches for the description of fluctuations in jets
and to discuss, using a wider set of data, the relevance and
problems of analytical QCD calculations.

However, factorial correlators have been studied only
in the framework of phenomenological models [5]. The rig-
orous analysis in the framework of QCD (even at leading
log orders) has not been performed so far.

This paper aims to fill the gap by presenting the ana-
lytical derivation of factorial correlators performed for the
QCD parton cascade [8] at the double logarithmic (DL)
accuracy [12]. For simplicity we consider only the fixed
αS case, expecting that it gives a good qualitative estima-
tion of the scaling exponents as was realized previously
for the case of the factorial moments [8]. The obtained
scaling dependence of the correlators on the relative dis-
tance between the two solid-angle cells recovers a similar
result obtained in the framework of the random cascading
α model [2]. This seems to be a kind of universal relation.

This paper is organized as follows. In the next section
we introduce factorial correlators defined for small solid-
angle cells around the subjet direction. In Sect. 3, using
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Fig. 1. Example of phase-space cell for the QCD parton cas-
cade. The two-dimensional cone of half-opening angle θ is
placed at both solid angle θ0 and azimuthal angle φ taken with
respect to the main jet axis

the DL generating functional [12], we derive the inclu-
sive two gluon distribution which is necessary to evaluate
the correlators. In Sect. 4 the leading contribution to the
factorial correlator is estimated, and is found to obey a
scaling law similar to the one in [2] for random multi-
plicative cascading models. In Sect. 5 we discuss briefly
the modifications which could come from relaxing some of
our approximations: including running αS or energy mo-
mentum conservation. Finally, in Sect. 6 we sum up our
results and present our conclusions, including suggestions
for the experimental evaluation of the normalized factorial
correlators and a discussion of the new QCD scaling law
found in the DL approximation of QCD.

2 Factorial correlators in QCD jets

Normalized factorial moments Fq [2–5] designed to study
multiplicity fluctuations in a given phase-space cell of size
δ are defined by

Fq(δ) =
〈n(n− 1) . . . (n− q + 1)〉δ

〈n〉q
δ

, (1)

where n is the particle multiplicity in the phase-space cell,
and the average 〈〉 is made over events. Among other types
of fluctuations studied using factorial moments, the inter-
mittency regime corresponds to moments which scale with
the size of the phase-space cell as

Fq(δ) ∼
(
∆

δ

)φq

, (2)

where ∆ denotes the size of the whole available phase
space, and φq is a positive scaling exponent known also as
the intermittency exponent.

In order to study correlations between different phase-
space cells one introduces factorial correlators Fq1,q2

(known also as multivariate factorial moments) [2,5] which
may be regarded as the multidimensional extension of the
moments (1). They take the form

Fq1,q2(δ1, δ2)

=
{(〈

n(n− 1) . . . (n− q1 + 1) |δ1 n(n− 1)

. . . (n− q2 + 1) |δ2

〉)/(
〈n〉q1

δ1
〈n〉q2

δ2

)}
, (3)

where δ1 and δ2 denote the sizes of two separate phase-
space cells. Assuming a multiplicative random cascade un-
derlying the particle production, one predicts a recursive
relation between the scaling exponents for factorial mo-
ments and factorial correlators:

φq1,q2 = φq1+q2 − φq1 − φq2 , (4)

where φq1,q2 is the intermittency exponent defined for dou-
bly normalized factorial correlators which correspond to
the factorial correlator (3) divided by factorial moments
derived for δ1 and δ2 cells respectively:

Fq1,q2(δ1, δ2)
Fq1(δ1)Fq2(δ2)

∼
(
∆

δ12

)φq1,q2

, (5)

where δ12 is the relative distance between the two phase-
space cells δ1 and δ2. Note the interesting feature that the
dependence on the individual phase-space cells δ1 and δ2
disappears from the factorial correlators when they are
normalized as in (5).

For the QCD parton cascade [8] the phase-space cell
is more conveniently chosen to correspond to a window
in the emission solid angle θ (see e.g. Fig. 1). The win-
dow size θ is then compared to a large scale θ0 which
denotes the jet emission angle. The window may be ei-
ther a one-dimensional ring of aperture θ placed at the
angle θ0 with respect to the sphericity axis, or it may be
a two-dimensional cone of half-opening angle θ placed at
both the solid angle θ0 and azimuthal angle φ taken with
respect to the main jet axis.

It was found that for QCD angular factorial moments
[8] there is a scaling relation:

Fq(θ) ∼
(
θ0
θ

)φQCD
q

, (6)

where the intermittency exponent φQCD
q calculated for

simplicity in double logarithmic approximation with fixed
coupling constant αS reads

φQCD
q =

γ0
q

− γ0q +D(q − 1). (7)

The number D denotes the window dimension, and it
equals D = 1 for the ring, and D = 2 for the cone. The co-
efficient γ0 is the QCD anomalous dimension for the gluon
cascade which for fixed αS equals γ2

0 = 4NC(αS)/(2π) [12],
where NC denotes the number of colors.

In order to extend the intermittent analysis by investi-
gating also the possible correlations between particle flows
measured at two different rings around the subjet axis
(E, θ0) let us introduce the angular factorial correlators
for the QCD parton cascade, defined as follows. Similarly
as for the angular factorial moments one would identify
the large scale (size of the whole available phase space
∆) with the respective subjet emission angle θ0, and the
small scales δ1, δ2 with the window apertures θ1, θ2 (cf.
Figure 2). We will consider parton flows emitted into two
rings placed at the separation angle θ12 with respect to the
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Fig. 2. Phase-space cells for angular factorial correlators. Par-
ton flows are emitted into two rings placed at the separation
angle θ12 with respect to the subjet axis. The ring openings
are θ1 and θ2 respectively

subjet axis. The ring openings are θ1 and θ2 respectively
(see Fig. 2). In using DL approximation framework, we
have to assume that the angles are small with respect to
the subjet direction. More precisely, we will assume that
they obey the inequalities

θ1, θ2 � θ12 � θ0. (8)

Henceforth θ01 ∼ θ02, and the relative bin distance δ12 in
the one-dimensional approximation then corresponds to
the angular distance θ12 = θ02−θ01 between the two rings.
We will discuss the relevance of this DL approximation in
our discussion in Sect. 5.

Having defined angular factorial correlators, we may
now estimate them with a good accuracy from the convo-
lution of the inclusive two-particle density D(2)(P ;E, θ0;
k1, k2, θ12, θ1, θ2) with the respective multiplicity moments
in the phase-space cells θ1 and θ2. Using (as for the case
of factorial moments [8]) their expression in the so-called
KNO limit proportional up to constants to the q1th and
q2th power of the mean multiplicities N(k1θ1), N(k2θ2),
we obtain

Fq1q2(θ0; θ12, θ1, θ2) ∝
∫ E dk1

k1

∫ E dk2
k2

(9)

×D(2)(P ;E, θ0; k1, k2, θ12, θ1, θ2)Nq1(k1θ1)Nq2(k2θ2),

where E denotes the energy of the subjet.
The mean multiplicity for the QCD parton cascade is

dependent on an infrared cut-off µ, and it reads

N(kθ) ∼ eγ0 ln(kθ/µ). (10)

However, similarly as for the factorial moment case we ex-
pect that the cut-off dependence will disappear after nor-
malization, i.e. when coming to normalized factorial cor-
relators (5). The inclusive two-particle density D(2)(P ;E,
θ0; k1, k2, θ12, θ1, θ2) remains thus the only unknown quan-
tity necessary to evaluate (9). Its explicit form will be de-
rived in the next section.

3 Inclusive two-particle density

In order to obtain the explicit form of the two-particle den-
sityD(2)(P ;E, θ0; k1, k2, θ12, θ1, θ2) to insert it into (9), we

start with a derivation of a related quantity, D(2)
p (k1, k2),

from the QCD parton cascade formalism.
The inclusive two-particle density D(2)

p (k1, k2) i.e. the
inclusive density to produce two particles of momenta k1,
k2 from a parent particle of momentum p may be derived
in a convenient way from the generating functional for the
QCD parton cascade [12]. This functional in DL approxi-
mation with fixed αS takes the form

Zp[u] = u(p)e
∫

d3kMp(k)(Zk[u]−1), (11)

with the initial condition Zp[u] |{u=1}= 1. The function
u(p) is a probing function while the factorMp(k) describes
the DL probability of emitting a particle of momentum k
from a primary particle of momentum p. It reads

d3kMp(k) = γ2
0
dθ
θ

dk
k

φ

2π
θ̄p(k), (12)

where the cut-off θ-function θ̄p(k) contains phase-space
limitations resulting from a possible angular and energy
ordering between parent particle p and child particle k:

θ̄p(k) = {p > k, θpk < θp, kθpk > µ} , (13)

where µ is the infrared cut-off.
The inclusive two-particle density is then defined as a

functional derivative of Zp[u]:

D(2)
p (k1, k2) = k1k2

δ2Zp

δu(k1)δu(k2)

∣∣∣∣
{u=1}

, (14)

which results in a recursive equation for D(2)
p (k1, k2):

D(2)
p (k1, k2) = D(1)

p (k1)D(2)
p (k2) − δ(ln(p/k1))δ(ln(p/k2))

+
∫

d3kMp(k)D
(2)
k (k1, k2), (15)

where D(1)
p (k1)D

(2)
p (k2) denotes the single particle inclu-

sive densities for particles k1 and k2 respectively, and the
integration limits are defined by (13) (max(θ1, θ2) < θ <
θp, max(k1, k2) < k < p).

Taking into account the scaling properties of the DL
phase-space measure (12), one obtains an equation for the
modified inclusive two-particle density D(2)(E/k1, E/k2,
θ0/θ1, θ0/θ2; θ12) with a scaling dependence on the rele-
vant variables (chosen here to be p ≡ E, the energy of the
subjet, and k1 > k2, θ1 < θ2):

D(2)
p (k1, k2) ⇒ D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2; θ12)

= D(1)(E/k1, θ0/θ1)D(1)(E/k2, θ0/θ2)
−δ(ln(E/k1))δ(ln(E/k2)) (16)

+γ2
0

∫ E

k1

dk
k

∫ θ0

θ12

dθ
θ
D(2)(k/k1, k/k2, θ/θ1, θ/θ2; θ12),

where we have assumed (cf. (15)) that the intermediate
emissions represented by the homogeneous term of (15) do
not generate an additional particle flow into either the θ1
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Fig. 3. Diagrammatic representation of the single particle in-
clusive density D(1)(E/k1, θ0/θ1) a and the modified inclusive
two-particle density D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2; θ12) b
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Fig. 4. Diagrammatic representation of the convolution
D

(1,ex)
P (E, θ0) × D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2; θ12). It corre-

sponds to the emission of particles from one subjet (E, θ0)
originating from the main jet (P, θP ) into two rings of aper-
tures θ1, θ2 with separation angle θ12, placed around the subjet
axis

or θ2 window (θ12 < θ < θ0). The densities D(1)(E/k1, θ0/
θ1) and D(1)(E/k2, θ0/θ2) (cf. Fig. 3a) here denote single
particle inclusive densities for particles k1 and k2 respec-
tively. All notations are as in Fig. 2. The density
D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2; θ12) (cf. Fig. 3b) precisely
represents (still in the one-dimensional approximation)
the inclusive two-particle density to obtain two particles
of energies k1, k2 from the subjet (E, θ0) separated by the
relative angle θ12. The ring apertures are θ1, θ2 respec-
tively.

The relation between D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2;
θ12) and the two-particle density (9) is the following:

D(2)(P ;E, θ0; k1, k2, θ12, θ1, θ2) (17)

= D(1,ex)
P (E, θ0) ·D(2)(E/k1, E/k2, θ0/θ1, θ0/θ2; θ12),

where D(1,ex)
P (E, θ0) is the exclusive single particle density

to produce a subjet of energy E placed at the opening
angle θ0 with respect to the main jet P .

To sum up, the convolution (17) represents the emis-
sion of particles from one subjet (E, θ0) originating from
the main jet (P, θP ) into two rings of apertures θ1, θ2 with
separation angle θ12, placed around the subjet axis (see
Fig. 4).

Introducing new variables:

x1 =
k1
E
, w12 =

k1
k2
,

y2 = ln
θ0
θ12
, t1 = ln

θ12
θ1
,

t2 = ln
θ12
θ2
, (18)

we rewrite (15) as

D(2)(1/x1, w12, t1, t2, y2)

= D(1)(1/x1, y2 + t1)D(1)(w12/x1, y2 + t2)
−δ(ln 1/x1)δ(lnw12/x1)

+γ2
0

∫ 1

x1

dx′
1

x′
1

∫ y2

0
dy′

2D
(2)(1/x′

1, w12, t1, t2, y
′
2).(19)

In order to solve (19), we transform it into moment
space by means of the Mellin transform:

D(2)(ω,w12, t1, t2, y2)

=
∫ 1

0
dx1x

ω−1
1 D(2)(1/x1, w12, t1, t2, y2). (20)

Then we differentiate both sides of (19) with respect to
y2. Finally, we obtain

d
dy2

D(2)(ω,w12, t1, t2, y2)

= r(ω,w12, t1, t2, y2) +
γ2
0

ω
D(2)(ω,w12, t1, t2, y2), (21)

where the function r(ω,w12, t12, y2) reads

r(ω,w12, t1, t2, y2) =
∫ 1

0
dx1x

ω−1
1 D(1)(1/x1, y2 + t1)

×D(1)(w12/x1, y2 + t2). (22)

Equation (21) is an ordinary inhomogeneous linear differ-
ential equation. Taking into account the initial conditions
defined by (19), its explicit solution takes the form

D(2)(ω,w12, t1, t2, y2) (23)

= r(ω,w12, t1, t2, y2) +
γ2
0

ω
e(γ

2
0/ω)y2R(ω,w12, t1, t2, y2)

−δ(w12 − 1)e(γ
2
0/ω)y2 − γ2

0

ω
e(γ

2
0/ω)y2R(ω,w12, t1, t2, 0),

where the function r(ω,w12, t1, t2, y2) was defined in (22),
and the function R(ω,w12, t1, t2, y2) denotes the following
indefinite integral of r(ω,w12, t12, y2):

R(ω,w12, t1, t2, y2) =
∫ y2

dy r(ω,w12, t1, t2, y)e−(γ2
0/ω)y2 .

(24)

4 The QCD factorial correlators: Derivation

As a function of the two-particle inclusive density (23),
the convolution of D(2) and multiplicity correlators in (9)
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can now be expressed in explicit form. After a new change
of variables:

l1 = log
E

k1
, s12 = log

k1
k2
, (25)

(9) rewritten for the normalized angular correlators,

F̄q1q2(θ0/θ1, θ0/θ2) =
Fq1q2(θ0; θ12, θ1, θ2)

D
(1,ex)
P (E, θ0)Nq1(Eθ0)Nq2(Eθ0)

,

(26)
takes the form

F̄q1q2(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

eωl1

×D(2)(ω,w12, t1, t2, y2)

×e−q1γ0(y2+t1+l1)e−q2γ0(y2+t2+l1+s12), (27)

where we substituted D(2)(1/x1, w12, t1, t2, y2) by its in-
verse Mellin representation:

D(2)(1/x1, w12, t1, t2, y2)

=
∫ +i∞

−i∞

dω
2πi

(1/x1)ωD(2)(ω,w12, t1, t2, y2). (28)

Now let us calculate term by term the contributions
to the convolution integral (27) coming from the various
components of the modified inclusive two-particle distri-
bution (23) denoted (I), (II), (III) and (IV) as follows:

D(2)(ω,w12, t1, t2, y2)

= r(ω,w12, t1, t2, y2) (I)

+γ2
0

ω e(γ
2
0/ω)y2R(ω,w12, t1, t2, y2) (II)

−δ(w12 − 1)e(γ
2
0/ω)y2 (III)

−γ2
0

ω e(γ
2
0/ω)y2R(ω,w12, t1, t2, 0) (IV),

(29)

These terms have the following Mellin representation:

(I) r(ω,w12, t1, t2, y2)

=
∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi
1

ω − ω1 − ω2

× exp
(
γ2
0y2

(
1
ω1

+
1
ω2

)
+ ω2s12

+
γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
, (30)

(II)
γ2
0

ω
e

γ2
0

ω y2R(ω,w12, t1, t2, y2)

=
∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi
1

ω − ω1 − ω2

× 1

ω − ω1ω2

ω1 + ω2

ω1ω2

ω1 + ω2
exp

(
γ2
0y2

(
1
ω1

+
1
ω2

)

+ω2s12 +
γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
, (31)

(III) δ(w12 − 1)e(γ
2
0/ω)y2 = δ(s12)e(γ

2
0/ω)y2 , (32)

(IV)
γ2
0

ω
e(γ

2
0/ω)y2R(ω,w12, t1, t2, 0)

=
∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi

× 1
ω − ω1 − ω2

1

ω − ω1ω2

ω1 + ω2

ω1ω2

ω1 + ω2

× exp
(
γ2
0

ω
y2 + ω2s12 +

γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
. (33)

The contributions of (30), (31), (32), (33) to (27) may
be evaluated using the multidimensional saddle point ap-
proximation. For the first term of (30) the convolution
(27) takes the form

F̄ I
q1q2

(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

eωl1r(ω,w12, t1, t2, y2)

×e−q1γ0(y2+t1+l1)e−q2γ0(y2+t2+l1+s12)

=
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi

× 1
ω − ω1 − ω2

exp
( − q1γ0(y2 + t1 + l1)

−q2γ0(y2 + t2 + l1 + s12) + ωl1
)

× exp
(
γ2
0y2

(
1
ω1

+
1
ω2

)
+ ω2s12 +

γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
.

(34)

After performing the integral over the ω-pole in (34)
one obtains

F̄ I
q1q2

(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi
× exp (S(ω1, ω2, l1, s12, t1, t2, y2)) , (35)

which in the saddle point approximation may be estimated
to be (see (36) on top of the next page).

For (35), the function SI(ω1, ω2, l1, s12, t1, t2, y2) reads

SI(ω1, ω2, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)

+(ω1 + ω2)l1 + γ2
0y2

(
1
ω1

+
1
ω2

)

+ω2s12 +
γ2
0

ω1
t1 +

γ2
0

ω2
t2. (37)

Hence after evaluating (35) one obtains

F̄ I
q1q2

(θ0/θ1, θ0/θ2)

∼ − 1
4π2 exp

{
y2

(
γ0
q1

− γ0q1 + γ0
q2

− γ0q2
)

+ t1

(
γ0
q1

− γ0q1
)
+ t2

(
γ0
q2

− γ0q2
)}

. (38)
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∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi
exp (S(ω1, ω2, l1, s12, t1, t2, y2))
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(
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∂l1
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∂ω1
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∂ω2
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)
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−1/2

∂S
∂l1

=0, ∂S
∂s12

=0, ∂S
∂ω1

=0, ∂S
∂ω2

=0

. (36)

For the second term (31), convolution (27) takes the form

F̄ II
q1q2

(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

× dω
2πi

eωl1
γ2
0

ω
e(γ

2
0/ω)y2R(ω,w12, t1, t2, y2)

×e−q1γ0(y2+t1+l1)e−q2γ0(y2+t2+l1+s12)

=
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

∫ +i∞

−i∞

dω1

2πi

∫ +i∞

−i∞

dω2

2πi

× 1
ω − ω1 − ω2

1

ω − ω1ω2

ω1 + ω2

ω1ω2

ω1 + ω2

× exp (−q1γ0(y2 + t1 + l1)
− q2γ0(y2 + t2 + l1 + s12) + ωl1) (39)

× exp
(
γ2
0y2

(
1
ω1

+
1
ω2

)
+ ω2s12 +

γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
.

Since there are two ω-poles in (39) the integration over ω
will give rise to two separate saddle point exponents:

∫ +i∞

−i∞

dω
2πi

eωl1
1

ω − ω1 − ω2

1

ω − ω1ω2

ω1 + ω2

ω1ω2

ω1 + ω2

=
(
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) ω1ω2

ω2
1 + ω1ω2 + ω2

2
,

(40)

which have to be evaluated separately. One obtains

F̄ II
q1q2

(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞
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2πi

∫ +i∞
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×{
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− exp(SIIb(ω1, ω2, l1, s12, t1, t2, y2))
}
, (41)

where SIIa, SIIb read

SIIa(ω1, ω2, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)
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(
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+
1
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)
+ ω2s12
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0

ω1
t1 +
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0

ω2
t2 + ln
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ω2
1 + ω1ω2 + ω2

2
, (42)

SIIb(ω1, ω2, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)

+
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ω1 + ω2
l1 + γ2

0y2

(
1
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+
1
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)
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0
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2
. (43)

Hence, after evaluating (39) one obtains

F̄ II
q1q2

(θ0/θ1, θ0/θ2) (44)

∼ − 1
4π2

q1q2
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{
exp

[
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(
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)
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(
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q2
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)]}

.

Similarly, for the third term (32) and fourth term (33),
their convolutions (27) result in

F̄ III
q1q2

(θ0/θ1, θ0/θ2)

∼
∫ ∞

0
dl1

∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

eωl1δ(s12)e(γ
2
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=
∫ ∞

0
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)
, (45)
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×R(ω,w12, t1, t2, 0)e−q1γ0(y2+t1+l1)e−q2γ0(y2+t2+l1+s12)

=
∫ ∞

0
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∫ ∞

0
ds12

∫ +i∞

−i∞

dω
2πi

∫ +i∞

−i∞

dω1
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∫ +i∞

−i∞

dω2

2πi

× 1
ω − ω1 − ω2

1

ω − ω1ω2

ω1 + ω2

ω1ω2

ω1 + ω2

× exp (−q1γ0(y2 + t1 + l1)
− q2γ0(y2 + t2 + l1 + s12) + ωl1)

× exp
(
y2
γ2
0

ω
+ ω2s12 +

γ2
0

ω1
t1 +

γ2
0

ω2
t2

)
. (46)

The respective saddle functions obtained similarly as in
(40) and (41) are the following:

SIII(ω, p, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)

+ωl1 +
γ2
0

ω
y2 + ps12, (47)

SIVa(ω1, ω2, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)

+(ω1 + ω2)l1 + γ2
0y2

1
ω1 + ω2

+ ω2s12

+
γ2
0

ω1
t1 +

γ2
0

ω2
t2 + ln

ω1ω2

ω2
1 + ω1ω2 + ω2

2
, (48)

SIVb(ω1, ω2, l1, s12, t1, t2, y2)
= −q1γ0(y2 + t1 + l1) − q2γ0(y2 + t2 + l1 + s12)

+
ω1ω2

ω1 + ω2
l1 + γ2

0y2

(
1
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1
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)
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+
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0
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0
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t2 + ln
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ω2
1 + ω1ω2 + ω2

2
. (49)

Hence after evaluating (45) and (46) one obtains

F̄ III
q1q2

(θ0/θ1, θ0/θ2)

∼ − 1
4π2 exp

{
y2

(
γ0

q1 + q2
− γ0(q1 + q2)

)
− t1 (γ0q1) − t2 (γ0q2)} , (50)

F̄ IV
q1q2

(θ0/θ1, θ0/θ2) (51)

∼ − 1
4π2

q1q2
q21 + q1q2 + q22

×
{
exp

[
y2

(
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)
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(
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)
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(
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)]

− (q1 + q2)q2
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exp
[
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(
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)
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(
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)
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(
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)]}

.

We now have to sum up the contributions (38), (44),
(50) and (51) according to (27) and (29). Hence, finally,

the normalized angular correlators (26) read

F̄q1q2(θ0/θ1, θ0/θ2)

∼ 1
4π2A exp

{
y2

(
γ0

q1 + q2
− γ0 (q1 + q2)

)

+t1

(
γ0
q1

− γ0 q1
)
+ t2

(
γ0
q2

− γ0q2
)}

+
1

4π2 exp
{
y2

(
γ0

q1 + q2
− γ0 (q1 + q2)

)
−t1 (γ0 q1) − t2 (γ0q2)}
− 1
4π2 (A+ 1) exp

{
y2

(
γ0
q1

− γ0 q1 + γ0
q2

− γ0q2
)

+ t1

(
γ0
q1

− γ0 q1
)
+ t2

(
γ0
q2

− γ0q2
)}

, (52)

where
A =

q1q2
q21 + q1q2 + q22

.

After dividing (52), in analogy to (5), by the product
Fq1(θ0/θ1)Fq2(θ0/θ2) one obtains

F̄q1q2(θ0/θ1, θ0/θ2)
Fq1(θ0/θ1)Fq2(θ0/θ2)

(53)

∼ 1
4π2A

(
θ0
θ12

)φq1+q2−φq1−φq2

− 1
4π2 (A+ 1)

+
1

4π2

(
θ0
θ12

)φq1+q2−φq1−φq2
(
θ1
θ12

)γ0/q1
(
θ2
θ12

)γ0/q2

,

where φq1+q2 = γ0/(q1+q2)−γ0(q1+q2) and φq1 = γ0/q1−
γ0q1, φq2 = γ0/q2 − γ0q2. Note that the quantity φq1+q2 −
φq1 − φq2 has been denoted φq1,q2 in formula (4).

5 Angular scaling of factorial correlators

In order to discuss the physical properties of the QCD fac-
torial correlators, let us rewrite formula (52) in a different
form:

F̄q1q2(θ0/θ1, θ0/θ2)

∼ 1
4π2A

{(
θ0
θ12

)φq1+q2
(
θ12
θ1

)φq1
(
θ12
θ2

)φq2

−
(
θ0
θ1

)φq1
(
θ0
θ2

)φq2
}

+
1

4π2

{(
θ0
θ12

)φq1+q2
(
θ12
θ1

)φq1−γ0/q1
(
θ12
θ2

)φq2−γ0/q2

−
(
θ0
θ1

)φq1
(
θ0
θ2

)φq2
}
. (54)

The physical interpretation of the two brackets contribut-
ing to formula (54) is quite simple. Considering the first
one, which is dominant at large values of θ12/θ1, θ12/θ2
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(8): it corresponds to the contribution coming from the
full development of the parton cascade (minus the value
when θ12 ≡ θ0, i.e. substracting the effect of cascading
before θ0). Indeed, due to the QCD constraints of angular
ordering, the angular ordered path θ0 → θ12 is populated
by fluctuations with order q1 + q2, while the remaining
separated paths from θ12 → θ1 and θ12 → θ2 correspond
to the individual fluctuation patterns with order q1 and
q2. In the QCD framework at DLA, this contribution is
similar to the behavior of the random cascading models.

It is clear that this first term in (54) implies specific
angular scaling properties of QCD jets (at DLA). Normal-
izing this term by the product Fq1(θ0/θ1)Fq2(θ0/θ2) gives

F̄q1q2(θ0/θ1, θ0/θ2)
Fq1(θ0/θ1)Fq2(θ0/θ2)

∼ 1
4π2A

(
θ0
θ12

)φq1+q2−φq1−φq2

.

(55)

The scaling properties of (55) can be expressed by the
following three items:
(i) The normalized correlator (at DLA) depends only on
the angular separation θ12, and thus is independent of the
window sizes θ1, θ2.
(ii) It obeys a scaling law as a function of the ratio θ0/θ12.
(iii) The scaling exponent is related to the ones of the
factorial moments by φq1,q2 = φq1+q2 − φq1 − φq2 .

Such a prediction is similar to the one of random cas-
cading models, which has previously [13] been discussed
for soft hadronic multiproduction. In that case, the prop-
erty (i) has been verified, while the dependence (ii) showed
some bending and (iii) was largely violated since from the
observation in some range of the resolution it appeared
that φq1,q2 � φq1+q2 − φq1 − φq2 . We know now that the
multiplicity fluctuations in soft hadronic multiproduction
are influenced by Bose–Einstein enhancements. It would
thus be interesting to measure by comparing the normal-
ized correlators in jets, where the dynamics is more di-
rectly related to perturbative (and resummed) QCD prop-
erties. The experimental analysis can be done as an exten-
sion of what was done for angular factorial moments [9],
where window rings around the jet axis have been consid-
ered as phase-space slices.

Interestingly enough, a second contribution appears in
formula (54) which also has a simple physical interpreta-
tion. Contrary to the first term, the exponents φq1 −γ0/q1
and φq1 −γ0/q1 mean that the parton cascading structure
during the second step of the process related to the sepa-
rated paths from θ12 → θ1 and θ12 → θ2 is damped, since
the corresponding fractal dimensions γ0/q1 and γ0/q1 are
cancelled from the intermittency exponents. This corre-
sponds to the probability of having a contribution of par-
ton jets directly into the windows of observation. This
contribution is obviously subdominant at DLA, since the
exponents are smaller. It would lead to a violation of the
scaling properties (i)–(iii).

However, it remains to be found whether, beyond the
DLA approximation, such a contribution could be in prac-
tice larger than the first one. In particular, the lack of
DLA exponentiation could be compensated by the strong
contribution to multiplicity fluctuations of subjets directly

hitting the observation windows. This study is beyond the
scope of our paper devoted to the analysis of the DLA ap-
proximation but deserves our interest in the future.

6 Summary

We presented the analytical derivation of the factorial cor-
relators performed for the QCD parton cascade at the
double logarithmic (DL) accuracy. For simplicity we con-
sidered only the fixed αS case, expecting that it gives a
good qualitative estimation of the scaling exponents, as
was realized previously for the factorial moments. The
scaling dependence of the correlators on the relative dis-
tance between the two solid-angle cells recovered a similar
result obtained in the framework of the random cascading
α model [2,7], and seems to be a kind of universal relation.

However, it remains to be found whether the scaling
holds also beyond the DLA approximation, where the con-
tribution to multiplicity fluctuations coming from subjets
directly hitting the observation windows may be domi-
nant. This study is beyond the scope of our paper devoted
to the analysis of the DLA approximation but remains for
the future.

It would also be useful to compare these predictions
with QCD Monte Carlo simulations (based on parton
showers). It is already known that there is a noticeable
difference between QCD predictions at DLA and QCD
Monte Carlo simulations for factorial moments, these pre-
dictions being in better agreement (but not perfect) with
the data. Since the origin of this discrepancy is not well
understood at present, the study of factorial correlators
could be useful for identifying the problem.
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